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SUMMARY

A local block re&nement procedure for the e7cient computation of transient incompressible �ows with
heat transfer is presented. The procedure uses patched structured grids for the blockwise re&nement
and a parallel multigrid &nite volume method with colocated primitive variables to solve the Navier–
Stokes equations. No restriction is imposed on the value of the re&nement rate and non-integer rates
may also be used. The procedure is analysed with respect to its sensitivity to the re&nement rate
and to the corresponding accuracy. Several applications exemplify the advantages of the method in
comparison with a common block structured grid approach. The results show that it is possible to achieve
an improvement in accuracy with simultaneous signi&cant savings in computing time and memory
requirements. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A signi&cant challenge in computational �uid dynamics is the simulation of �ows in domains
with realistically complex geometries and steep gradients in the solution, which often occur
in engineering practice. Besides the general di7culty of generating an adequate grid for ge-
ometrically complicated con&gurations, the mesh has to be very &ne in regions with steep
gradients in the solution, in order to achieve the required numerical accuracy. An overall
re&nement of the mesh, however, may also lead to a high resolution in regions where it is
not required. This implies an unnecessary waste of memory and CPU-time, often limiting the
quality of the simulation. This problem can be circumvented by a procedure that enables a
local re&nement of the mesh, limited to regions where it is actually needed.
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Several alternatives have been proposed in the literature for the implementation of local
grid re&nement. Existing methods can be generally grouped into three categories:

• p-method: the approximation order of the discrete operator is increased in the re&nement
region;

• h-method: new points are added to the grid in the re&nement region;
• r-method: the grid points are redistributed and clustered in the re&nement region.

The p-method is sometimes implemented in combination with &nite element methods, but
the h- and r-re&nements are by far more frequently used. Finite element codes very often
work with unstructured grids, which have the inherent ability to locally restrict the re&nement,
either by the h-, or by the r-method, but they also have more complex data management and
di7culty in the development of e7cient solution algorithms. A separate data structure for the
&nite element connectivity is always needed. Some examples of this methods are found in
References [1–3].

Structured grids are very common in conjunction with &nite volume or &nite diIerence
discretisation methods. Structured grids have a very simple data management, because con-
nectivity of the control volumes is known a priori. The grid structure enables a very e7-
cient implementation of the code. Unfortunately, local re&nement of structured grids is not a
straightforward task. The simple relocation of grid points following the characteristic lines of
the problem allows for an improvement in the solution without any change in the original data
structure and has been extensively investigated [4–10]. This r-re&nement method, however,
may result in very skewed and distorted grids at high re&nement rates, especially in the case
of convection dominated �ows [11], if no constraints are imposed [6; 10]. Moreover, the mesh
re&nement in a region of the domain is always achieved at the expense of a mesh coarsening
in the remaining regions.

One approach to the grid re&nement of structured grids by the addition of new computa-
tional points (h-method) is the simple subdivision of the control volumes into smaller ones
in the region, where re&nement is required. In some cases, the re&ned regions are treated as
diIerent grid levels and the results on a coarse level serve as boundary condition and initial
guess to the computation of a &ner level. By this way the grid structure is maintained at
each grid level. A fairly successful example of this strategy is the AMR method of Quirk
[12–14], following the idea of Berger and Collela [15] and designed initially for use with
Cartesian grids. Several authors adopted the idea and extended the method, or applied it to
diIerent physical problems [16–21]. This method seems to be best suited for single processor
computations, but complex data management is required and a complete parallelisation is not
straightforward. In order to preserve the e7ciency of the multigrid method in the parallel im-
plementation of a similar multi-level approach [22], each processor had to solve a compatible
grid that covered the full domain with re&nement con&ned to the processor’s partition of the
total grid.

Other authors couple re&ned and non-re&ned regions at the same level, computing the whole
grid simultaneously [23–28]. Special discretisation schemes are required for the coarse–&ne
grid transition. Properly speaking, this type of grids must be considered unstructured, although
mainly composed of quadrilaterals (2D) or hexahedrals (3D). Hence, this kind of h-re&nement
of an initially structured grid loses some of the structured grid advantages, like simple data
management, while imposing limitations to the employment of multigrid solvers [29]. On the
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other hand, this class of methods is able to restrict the re&nement more exactly to the required
region.

A convenient way to approach the grid re&nement problem with structured grids is to
divide the domain in several blocks. The blocks in the re&nement region are then discretised
with &ner meshes. This also simpli&es the grid generation process, because each block can
match a part of a complex boundary geometry without becoming very skewed, or loosing
its simple structure, which is important for the achievement of high numerical e7ciency.
Moreover, such a block structure is advantageous with respect to parallel computing, because
it can serve as a base for the parallelisation of the method by grid partitioning. This kind
of re&nement corresponds to the h-method and was the approach implemented in the present
study.

Using a block-structuring technique of local grid re&nement, the treatment of the block
interfaces needs special attention in order to ensure a proper coupling of the subdomains.
There are several ways by which the blocks can be interconnected. The highest
degree of simplicity in the grid generation process is achieved when the blocks connect
to each other by arbitrary overlapping regions (so-called Chimera grids, e.g. References
[30; 31]). However, it is di7cult to ensure conservation and to treat regions with strong
gradients in this case [32]. Also, the interpolation between the overlapping regions may
have to be constructed diIerently for diIerent con&gurations, restricting the generality of
the code.

Another way to handle the connection between the blocks is to patch their internal bound-
aries together, making them share a common interface line, but allowing a diIerent point
distribution for each block (non-intersecting grid lines). This strategy results in a highly
e7cient implementation, since redundant regions are avoided. These patched grids are also
called zonal grids [33], block adaptive grids [34] or, in a more general classi&cation, partially
discontinuous structured composite grids [35].

Considering the attributes of the code that served as basis to the present grid re&nement
method, i.e. very e7cient implementation of a block-structured parallel multigrid solver, the
best compromise of an h-method that preserves these attributes was a blockwise re&nement
using patched grids. Patched grids have been used mainly in aerodynamics to solve the Euler
equations, e.g. see Reference [36]. Rai [33; 37; 38] studied the adaptation of several solution
techniques to the application of patched grids. He also adapted a combined Euler=Thin-Layer-
Navier–Stokes solver to the simulation of rotor=stator interaction, using these kind of grids to
handle the relative movement of diIerent parts of the �ow domain [39]. Other publications on
the subject were concerned with applications or extensions of this technique (e.g. References
[40–42]). In a diIerent approach, Seidl et al. [34] employed patched grids to the solution of
the Navier–Stokes equations and showed the suitability of the blockwise re&nement to parallel
computation.

The local re&nement method described in this paper, called local block re&nement (LBR),
is aimed at increasing accuracy and e7ciency in the computation of �ow problems. Special
care was taken to allow for the parallel computation of the locally re&ned blocks and to
preserve the good convergence behaviour of the multigrid method. The general discretisation
procedure is &rst outlined in the next section, followed by a detailed description of the local
re&nement method in Section 3. In Section 4, the LBR method is then validated and analysed
by means of simple and complex �ow problems, regarding convergence behaviour and gains
in accuracy and computational costs.
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2. DISCRETISATION PROCEDURE

Considering the �ow of an incompressible Newtonian �uid in a two-dimensional geometry,
the relevant governing equations are the conservation of mass, momentum and energy. In the
case of turbulent �ows, the governing equations are considered to be in the Reynolds averaged
form and equations for the conservation of the turbulent kinetic energy and its dissipation rate
(k-� turbulence model) are additionally included. The governing equations are solved via a
block-structured &nite volume method, whereby the solution domain is divided into blocks
and each block is discretised in a structured mesh of quadrilateral (in general non-orthogonal)
control volumes (CVs).

To calculate the balance of the conserved quantities, the governing equations are integrated
over each CV. Representing by � the transported quantity in each equation, the integral form
of all governing equations can be expressed in a general form
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where O is the volume of the CV, which in the 2D case corresponds to its area, Ui and
xi (i=1; 2) are the Cartesian velocity components and coordinate directions respectively, t
is the time, � is the density, R� is a diIusion coe7cient and Q� is a distributed source.
The values of these variables in each balance equation are shown in Table I, where � is the
dynamic viscosity, P is the pressure, cp is the speci&c heat, k is the thermal conductivity and
S is the viscous dissipation function. For the simulation of turbulent �ows, the k-�-model of
Launder and Spalding [43] is employed, whereby kt is the turbulent kinetic energy, �t is the
eddy viscosity, Pk is the rate of production and � is the dissipation rate. The four remaining
variables (�k , ��, c�1 and c�2) are adjustable parameters of the model.

The solution of the coupled set of non-linear equations is based on the well-known
SIMPLE algorithm [44]. The discretised momentum equations are linearised using values
for the pressure and mass �uxes from the previous iteration. With the resulting velocity
&eld a pressure correction equation is assembled and solved. The mass �uxes, velocities, and
pressure are then corrected and other possible scalar equations are solved. This procedure is
repeated until the maximum sum of the absolute residuals in all equations is reduced to a
prescribed value. Details about the discretisation process and the pressure–velocity coupling
can be found in References [45] and [46].

Table I. Values of variables in the general balance (Equation (1)).
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An iterative ILU decomposition method is used for the solution of the sparse linear systems
of the resultant equations [47] and a non-linear multigrid scheme is employed for convergence
acceleration [48]. For the parallel computation, a message passing method and a block struc-
tured grid partitioning with non-overlapping subdomains and auxiliary CVs along the block
interfaces are employed [49].

3. LOCAL BLOCK REFINEMENT

The present re&nement strategy is based on the block structure of the grid. The fully structured
case, when grid lines at internal block boundaries must match on both sides of the interface,
is a particular case of a generic block structure. The generalisation consists in relaxing the
condition of zero order continuity of grid lines across block interfaces. The point distribution
of the grid can now be arbitrarily de&ned at both sides of the internal boundary. This generic
block structure is called patched grid and Figure 1 shows an example of it.

In the �ow simulation program, the coupling of the generic block structure demands a
special treatment of the block interfaces. If we consider, for example, that two blocks are
located on diIerent processors, all that each processor needs to know about the neighbour is
the information stored in the layer of auxiliary CVs at the interface. This information is used
as a boundary condition for the block and actualised from sweep to sweep. In other words,
for each CV in the vicinity of an internal boundary, there must be an auxiliary CV on the
other side of the interface, which contains the data of an equivalent CV in the neighbour
block. When the point distribution along the interface coincides, a simple exchange of CV
data at the interface su7ces. Patched grids, however, require an additional data structure and
an interpolation procedure, since the number of CVs on each side of the interface is no longer
the same.

To supply the information to the neighbour, an array of virtual CVs &tting the mesh distri-
bution of the neighbour is computed at each interface segment. This provides a data structure
identical to that expected by the neighbour block.

Figure 1. Example of patched grid around a cylinder.
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During the computation, the data needed by the block at the interface are of two types:

• geometrical data: data of this kind need to be exchanged only once, since they do not
change during the calculation;

• dependent variables and matrix coe5cients: this kind of data has to be interpolated and
exchanged at each inner (sweep) and outer iteration.

To follow the goals of having, at the same time, the lowest storage overhead and the highest
e7ciency, each kind of data is treated in a diIerent manner.

Interpolation of geometrical data

The geometrical quantities of the virtual CVs are interpolated at the beginning of the com-
putation in a side-by-side procedure. Immediately after the interpolation, they are exchanged
and stored in the neighbour block in the usual arrays for geometrical data. This way, the
supplementary arrays needed for the interpolation are kept small and local to the subroutine.
This causes the compiler to reserve only the memory amount needed for one side, because
this space is deallocated at the end of the subroutine and can be reused for the next side.

In the �ow simulation program, all virtual quantities that need to be exchanged repeatedly
lie at the centre of the CVs. Therefore, all can be interpolated by the same procedure. Because
these exchanges have to be performed many times during the computation, the e7ciency of
this procedure is more important than memory saving. Hence, two additional global arrays for
each block side were introduced, providing for a very e7cient transfer of virtual data during
the computation.

It is important to emphasise the diIerence between auxiliary CVs and the recently introduced
virtual CVs. Auxiliary CVs are a regular part of the grid structure in a block, containing
information received from the neighbour block and matching the grid point distribution of a
block at the interface. In contrast, virtual CVs do not &t, in general, in the grid structure of
a block. They are generated in order to match the grid point distribution of the neighbour at
the interface and serve to the transmission of data to auxiliary CVs at the neighbour block.

Since it is assumed that the grid does not move, values of the length of the CV face and
interpolation factor for the face centre of virtual CVs need to be computed only once. After
receiving from the neighbour block (processor) information about the number of CVs and
the position of its grid points at the interface segment, a processor is able to compute the
geometrical properties of virtual CVs, which would be exactly the CVs of the &rst row at the
interface, if there was no local block re&nement (see Figure 2). The virtual CVs have similar
inclinations as the actual CVs, causing all quantities to be interpolated, never extrapolated,
which is clearly recognised in Figure 3. The main advantage of this strategy is the guarantee
that all virtual CVs lie within the boundaries of the block, which computes them.

First of all, the virtual boundary points received from the neighbour are ordered between
two real boundary points and this order is stored in a database. A linear interpolation factor
is then computed based on the relative position of each virtual boundary point. With this
factor, virtual internal points are computed for each virtual boundary point, following the
same inclination of the local grid lines and forming the frame of the virtual CV layer. This
ensures that the virtual layer of CVs will never be de&ned outside the boundaries of the
current block. Finally, the virtual CV centres and interpolation factors from the virtual centres
to the middle of the faces are calculated.
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Block A

real CVs centre

real grid point
boundary point
of Block B
virtual CVs centre
virtual grid point
virtual CVs 

block boundary

(Block A)

Figure 2. Virtual CVs generated in Block A. The boundary points of Block B ( ) are the only
information transmitted to Block A.

Block A
Block B

block boundary

real CVs

auxilliary CVs

virtual CVs

Figure 3. Blocks with auxiliary CVs after interpolation and exchange of geometrical data. Also shown
is the data transfer from virtual to auxiliary CVs.

All virtual geometrical values are then sent to the neighbour block, where they are stored
in the usual geometrical arrays (see Figure 3). After being sent to the neighbours, the virtual
geometrical data are overwritten, since they are no longer needed in the current block. The
allocated memory is therefore freed to be used by other local arrays, ensuring the smallest
requirement of additional memory.

Interpolation of coe5cients and dependent variables

All coe7cients and dependent variables are needed at the centre of the virtual CVs and, thus,
their interpolations and exchanges can all follow the same procedure. In order to prepare
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real grid point

virtual CV center
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Figure 4. Interpolation of virtual centre values.

for the interpolation, the two real centre points closest to a virtual centre PVi are identi&ed,
the &rst real centre being called the base point for the interpolation (see Figure 4). Note
that these real centre points are not necessarily related to the real boundary points used to
determine the virtual boundary points. The linear interpolation factor fp based on the distance
to the real centres is calculated by

fpVi =
dVi
dbase

(2)

where dVi and dbase are de&ned in Figure 4. This interpolation factor is stored in a global
array, together with the index of the base point for the interpolation ifp. This means that
just one integer and one real (double-precision) array per block side are stored permanently,
representing an increase of only few per cent caused by the grid re&nement procedure in
the memory requirement. The calculation of fp has to be done during the initialisation,
immediately after the calculation of the geometrical data, while these data are still available.
During the computation, no additional information is required.

Every time an exchange of variables or coe7cients has to be performed, the corresponding
variable is linearly interpolated at the virtual CV’s centre by

�Vi =�ifp + fpVi(�ifp+incr − �ifp) (3)

and then sent to the corresponding auxiliary CV at the neighbour (see Figure 3).
So, the interpolation of dependent variables and coe7cients during the computation becomes

simple and very e7cient, causing the lowest possible increase in eIort for the exchange of
interface data, compared to the implementation without local block re&nement.

An important property of the virtual CV de&nition and interpolation procedure described
above is the exact resembling of the original data transfer method in case of no local block
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re&nement. If regular fully structured grids are used, the virtual CVs coincide with actual CVs
and no interpolation is performed.

Special attention had to be devoted to the de&nition of virtual CVs and the exchange of
data at block corners in junctions of three or four blocks. In the case of non-orthogonal
grids, cross-derivatives of the velocity &eld along the CV faces may have non-zero values.
These cross-derivative terms are part of the molecular (diIusive) transport of momentum. The
discretisation of the cross-derivative terms introduces an in�uence of the ‘diagonal’ neighbours
(NW, NE, SW and SE) on each CV. This contribution increases with larger deviation from
orthogonality and with an increased diIusion dominance in the �ow. In addition to this, the
consistent de&nition of block corner CVs plays a key role in the convergence of the multigrid
method. Because of these considerations a special procedure was developed for the treatment
of block corners (see Reference [50], for details).

Mass 6ux calculation at internal boundaries

Fuchs [51] performed one of the rare investigations on patched grids in connection with the
multigrid method. He advised that, besides the consistent information exchange between the
blocks, some conservation laws have to be satis&ed very accurately (to the level of round-
oI errors) in order to obtain convergence. Depending on the system of partial diIerential
equations and on the type of data exchange between the blocks, other conservation laws
may be satis&ed approximately, i.e. up to the level of truncation errors. In the present �ow
simulation program, the mass conservation law is of the former type and requires a speci&c
data exchange procedure. The remaining quantities (momentum, thermal energy, etc.) admit
the satisfaction of conservation up to the overall truncation error of the scheme, which is
ensured by the exchange procedure described in the previous section.

Because the SIMPLE method uses the continuity equation for the coupling of velocities
and pressure, it is essential that the mass �uxes through the block interfaces agree in both
blocks precisely. The present interpolation method, however, does not satisfy intrinsically this
requirement, as shown in the following.

The exact mass �ux through the interface can be expressed by

ṁ=
∫
�Uini dS (4)

where Ui are the components of the velocity vector, � is the �uid density, S is the common
surface between the blocks (in the 2D case it is represented by a line) and ni are the compo-
nents of the outward directed normal vector to this surface. In the discretisation, this integral
is approximated for the east side of a block A by the sum

ṁ≈ ṁ|A =
∑
NA

ṁe=
∑
NA

�Uie ni�s (5)

where Uie are the components of the velocity vector interpolated in the centre of the east face
of a CV adjacent to the interface, �s is the area of the same face with its outward normal
components ni. NA is the number of control volumes located in block A along the interface
to block B. At the neighbour block B, a similar summation takes place, producing ṁ|B .

Note that using patched grids, in general, we have NA �=NB and, therefore, ṁ|A �=ṁ|B even
if the two velocity pro&les are the same. The approximated �uxes, ṁ|A and ṁ|B , will only
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coincide in the case of an equal distribution of CVs along the interface or of a constant
gradient of the momentum �u. In both cases, the summations agree up to round-oI errors
irrespective of the number of CVs. However, if the distribution of the momentum �u over
the interface is not linear and the CV distribution does not coincide, the approximations will
diIer, since the approximation in the side with more CVs will be more accurate than the
other.

To force the satisfaction of the mass conservativeness condition, the present method has to
execute a correction every time the mass �ow rate is calculated or exchanged. Two kinds of
corrections were tested. The &rst kind, called correction by product, used a factor to correct
the mass �uxes on each CV along the interface of one of the neighbouring blocks, forcing
the summation to equal the total mass �ux of the neighbour block. This correction method
was found to be unstable, amplifying oscillations, when there was recirculation or the mass
�ux through the interface was close to zero.

The second kind of mass �ux correction, called correction by sum, was preferred. Instead
of using a factor, one of the blocks, for instance block B, distributes the diIerence between
the two total �ow rates, Wṁ, among its CVs, adding a correction to the mass �ux of each
CV at the interface side. To perform a distribution that accounts for an eventual recirculation
through the interface, the amount of correction corresponding to an individual CV is based
on the sum of the absolute mass �uxes and is given by

Wṁwl =

[
|ṁwl |∑NB
j=1 |ṁwj |

]
Wṁ l=1; NB (6)

The resulting corrected mass �uxes

ṁ∗
wl =ṁwl +Wṁwl l=1; NB (7)

satisfy the equality

ṁ|A = ṁ∗|B (8)

Finally, after the correction of the mass �ux, the velocity vector of the auxiliary CV at the
boundary, used originally to compute the �ux, is correspondingly corrected in order to preserve
the consistency of the method.

In general, the mass �ux correction has to be seen as a link between the two regions with
diIerent mesh spacing. Thereafter, as the solution converges, the correction Wṁ may converge
to a value slightly diIerent from zero, i.e. the correction continues to be needed, even when
the exact numerical solution is achieved. The magnitude of this value tends to increase as the
re&nement rate NB=NA departs from the unity.

4. NUMERICAL RESULTS

The present LBR procedure was validated and evaluated by means of three test cases. The
plane Poiseuille �ow in a channel served to the study of convergence behaviour and robustness
of the procedure. Two practical, more complex applications, namely the laminar, con&ned
�ow around a cylinder and the turbulent �ow around a car allowed the estimation of practical
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Figure 5. Detail of grids for channel �ow.

performance enhancements and accuracy gains through LBR, specially in conjunction with
the multigrid method.

A very important characteristic of the new local block re&nement scheme is its consistency
with the original �ow simulation solver. In the case of a conventional grid, with no local
re&nement, both versions showed exactly the same convergence history and numerical be-
haviour and, therefore, they converged to the same solution. The increase in the computation
time was always smaller than 5 per cent, compared to the original version of the code. This
was veri&ed for all test problems in serial as well as in parallel computations. This consistency
with the original version of the code allows the assumption of a parallel performance similar
to that version (see e.g. Reference [49]).

First test case: channel 6ow

The plane Poiseuille �ow was used to test the proposed local block re&nement scheme with
respect to its sensitivity to the re&nement rate RR, de&ned as the ratio between the number
of CVs on both sides of the block interface. Two cases were considered: in one the interface
between the re&ned and non-re&ned blocks was perpendicular to the �ow, and in the other
two interfaces, parallel to the �ow, separated the blocks. The &rst case tested the procedure
regarding the convective terms, while the second tested mainly the diIusion terms, because
these were the dominant �uxes through the interfaces. An example of each case is shown in
Figure 5.

The number of outer iterations required for convergence after a sudden start from rest to a
Reynolds number of 100 was used as the comparison parameter. The results can be seen in
Table II. At &rst, we note that the remarkable advantages of the multigrid acceleration method
in the non-re&ned case (RR=1) are preserved and even extended when LBR is applied.
Table II also shows that the number of outer iterations with the multigrid method remains
relatively stable up to RR=4. For larger re&nement rates, the number of outer iterations
increased, in the case of the vertical interface, but not as fast as in the single grid computa-
tions. Because of memory restrictions and to preserve the same computational conditions, the
computations were limited to a re&nement rate of eight, but tests starting with a coarser grid
showed a limited increase in computational eIort even at higher values of RR. The number
of iterations at a re&nement rate of 16 increased only by a factor smaller than three com-
pared with the case with RR=8. With the horizontal interfaces, the method became unstable
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Table II. Convergence for channel �ow.

Re&nement rate Number of iterations

Vertical interface Horizontal interface

Multigrid Single grid Multigrid Single grid

1.0 22 312 31 424
1.5 25 359 49 380
2.0 25 416 53 352
2.5 25 489 45 386
3.0 29 576 41 484
4.0 41 831 37 760
5.0 61 — 45∗ 1108∗

6.0 85 — 57∗ —
8.0 161 — 85∗ —

∗Initial velocity = 1:0m s−1.

at RR¿4 and diverged. Divergence occurred because of velocity oscillations that appeared
along the interfaces when the �uid started from rest. At large values of RR, the oscillations
could no longer be damped by the mass �ux correction procedure described in the previous
section. The problem was circumvented by prescribing an initial velocity to the �uid, which
prevented the occurrence of oscillations.

The eIective advantage of employing the multigrid method cannot be extracted from
Table II, because of the additional eIort needed by V-cycles compared to single grid it-
erations. Therefore, the only suitable criteria is the computing time. To allow the comparison
of cases with diIerent numbers of CVs and to analyse just the in�uence of the numerical
scheme, the computing time needed for the &nest grid was divided by the total number of
CVs on this grid level. The resulting time per CV was then divided by the equivalent time
of the reference case, i.e. the case with multigrid and no local re&nement. This normalisation
resulted in a relative time that can be expressed as

RelativeTimeRRi =

(
comp: time
No: of CVs

)
RRi(

comp: time
No: of CVs

)
RR1−MG

(9)

where RRi stands for a re&nement rate of i, computed either with the single grid or with
the multigrid method. The relative computing time obtained, permitted the comparison of test
runs on diIerent machines, which would be otherwise impossible. It is also a measure of the
numerical e7ciency of the method.

Figure 6 shows the evolution of the relative computing time with the re&nement rate for both
cases and the clear advantage and stabilizing eIect of the multigrid solver. This demonstrates,
at the same time, the compatibility of the developed LBR scheme with the implemented
multigrid solver. The graphics also contain the relative time needed by the code without LBR
(black points at RR=1), which was with multigrid only 4 per cent and without 2 per cent
faster.
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Figure 6. Comparison of the relative computing time for the channels with vertical interface (left)
and with horizontal interfaces (right).

Based on the foregoing analysis, the developed method can be regarded as robust until a
re&nement rate of four, if diIusive transport through the interface dominates, and up to a
much higher value, if the convection through the interface plays the main role. Numerical
e7ciency, represented by the number of outer iterations required for convergence was also
signi&cant up to a re&nement rate of four, leading to RR64 as a recommended limit for
practical applications. Higher re&nement rates should be split into two or more steps, using
transition blocks.

Second test case: con9ned 6ow around a cylinder

A more complex test case was employed to investigate the order of the local re&nement
scheme and its numerical behaviour in the case of a recirculating �ow. To this end, the �ow
around a circular cylinder con&ned in a channel was used. Since there is no exact solution
available for the considered problem, geometry and boundary conditions were chosen to meet
a standard, well-de&ned test case, published by Sch2afer and Turek [52]. This standard problem
was utilised for the comparison of a series of �ow simulation codes, based on a variety of
numerical schemes. Sch2afer and Turek [52] presented and analysed the benchmark results of
about 15 diIerent codes. Although the results showed a relatively large scatter due to large
diIerences in spatial and time resolution, it was possible to establish lower and upper bounds
for the correct solution based on the more accurate computations. These lower and upper
bounds diIered at some quantities, e.g. drag coe7cient, by only 0.3 per cent, demonstrating
the reliability of the obtained results.

The geometry of the standard problem is shown in Figure 7, where all length scales are
given relative to the cylinder diameter D=0:1 m. An incompressible Newtonian �uid with
a kinematic viscosity of "=10−3 m2 s−1 and a density of �=1:0 kg m−3 was prescribed.
The �ow case computed was a steady �ow with Re=20, corresponding to case 2D-1 in the
mentioned benchmark.
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Figure 7. Geometry and boundary conditions for the con&ned �ow around a cylinder.

Table III. Results for steady test case 2D-1 in Reference [52].

Code Unknowns CD CL La WP Mem. CPU time

FASTEST-LBR 150 528 5.5843 0.0109 0.0827 0.1176 39MB 102 s
37 632 5.5807 0.0111 0.0814 0.1176 11MB 27 s
9408 5.5632 0.0115 0.0775 0.1175 3MB 6 s

FASTEST 294 912 5.5846 0.0106 0.0846 0.1176 75MB 192 s
73 728 5.5852 0.0105 0.0845 0.1176 19MB 47 s
18 432 5.5755 0.0102 0.0842 0.1175 5MB 13 s

‘Correct solution’ lower bound 5.5700 0.0104 0.0842 0.1172
upper bound 5.5900 0.0110 0.0852 0.1176

The benchmark in Reference [52] revealed the previous (non-re&ned) version of the code as
one of the most e7cient and accurate of all codes compared. This renders more signi&cance
to any enhancement in the performance of the cited code. The grid chosen to run the problem
with LBR was a local re&ned version of the original grid used in the benchmark. This allows
a more realistic comparison of the best performance of both versions.

The physical quantities proposed for comparison are the drag coe7cient CD, the lift coef-
&cient CL and the pressure diIerence WP between the foremost and the rearmost points of
the cylinder, as well as the length of the recirculation region La. The results for the proposed
quantities and the performance data obtained are summarised in Table III, where the present
version of the code is called FASTEST-LBR. Following the rules prescribed for the bench-
mark, results for the last three grid levels (of a total of &ve multigrid levels) are presented. The
results obtained with the previous version of the code (FASTEST) and published by Sch2afer
and Turek [52] (method 7a) are also presented in Table III for a better contrast. Computations
were carried out on the same machine, a workstation HP735 with a Linpack1000 performance
rate of 13 M�ops, allowing a direct comparison of the computing time. The memory require-
ments are given in Mbytes and the number of unknowns correspond to the sum of the points
for calculation of U; V and P, i.e. three times the number of CVs.

Table III allows also an analysis concerning the accuracy of the solution, based on the
proposed physical quantities. Since no exact solution for this problem is available, it is im-
possible to make a quantitative statement about the relative error of these results. It can be
said, however, that the results converge to similar values, well inside the bounds given by
Sch2afer and Turek [52] for the ‘correct solution’ in almost all cases. The recirculation re-
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gion La showed some lack of accuracy because the local re&nement emphasised the cylinder
vicinity, leaving part of the recirculation region out. This result stresses the importance of a
careful choice of the locally re&ned region, depending on the objective of the computation.

The computation of the con&ned �ow around a cylinder served also to estimate the order
of accuracy of the spatial discretisation. With the results of three successive grid levels for
a general quantity the order of accuracy of the numerical scheme can be estimated (see
Reference [29]). The results of FASTEST-LBR, listed in Table III, indicate that the order of
the scheme is approximately two, con&rming that the order of the underlying discretisation
scheme (second order) was preserved by the local re&nement procedure.

The results of Table III demonstrate that both memory requirement and computing time
of the already highly e7cient original code could successfully be halved by the application
of local block re&nement. These enhancements were obtained without loss of accuracy in
quantities, such as CD; CL and WP, which clearly demonstrate the potentiality of the LBR
method.

Third test case: turbulent 6ow around a 2D car model

As a &nal test case, the turbulent �ow around a 2D car model was chosen to demonstrate
the robustness and general applicability of the developed local block re&nement method. This
�ow problem was investigated thoroughly by Angelis in his thesis [53]. Angelis’ work dealt
with the complementary numerical and experimental investigation of the �ow around a 2D
car model and studied, among others, the eIect of the gap between the model and the ground.
This 2D model consisted of a beam with a car pro&le that stretched over the entire cross-
section of the wind tunnel. Precisely measured in�ow boundary conditions and access to the
original experimental results allowed a highly detailed comparison of results.

The geometry and boundary conditions adopted for this computation corresponded exactly
to one of the cases investigated by Angelis [53], namely the case of a 3-mm gap between
the model and the ground and in�ow velocity of 15 m s−1 at the middle of the wind tunnel.
The Reynolds number based on the model length was 3:38 × 105. Likewise in the previous
test case, a conventional grid computed with the former version of the code was compared
with a locally re&ned grid calculated with the present code version. The conventional grid
chosen was the original grid used by Angelis [53], the &rst level of which can be seen at
the top of Figure 8. The need for a very &ne grid resolution in the vicinity of the model
and the requirement to continue the grid lines up to the boundary led to the acceptance of
extremely large grid aspect ratios in the bottom of the car and in the outer �ow regions. As
a compromise to avoid a &ne grid resolution over the whole domain, the large aspect ratios
have a negative eIect on the convergence process and reinforce the damping eIect of the
employed upwind discretisation of the convection terms.

The locally re&ned grid had approximately the same resolution in the vicinity of the model
and in the near wake region as the conventional grid (see bottom of Figure 8). Some grid
points were added in the streamwise direction at the gap region between the model and the
ground to reduce the large aspect ratios of the original grid. In the rest of the domain the new
grid was heavily coarsened. This represented an economy of 34 per cent in the total number
of CVs. In addition, the better aspect ratios and the reduction of the number of blocks from
19 to 12, resulting from the grid coarsening, had a very positive eIect on the convergence
behaviour, as it is shown below.
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Figure 8. Conventional and locally re&ned grids for the computation
of the third test case (&rst grid level).

While Angelis [53] calculated this problem using only two grid levels, a further &ne grid
level was employed for the present comparison. The convergence history for the computation
of each grid level, the &rst with single grid and the others with multigrid method, is shown
in Figure 9. The convergence improvement obtained with the locally re&ned grid is evident.
While the &rst conventional grid level needed twice as many and the second level three
times the number of iterations of the locally re&ned grid to converge, the third grid level
failed completely to achieve the prescribed convergence limit (10−4). The poor quality of
the grid caused the residual norm of the multigrid solution to oscillate around a value of
5× 10−4.

The eIect of the improved convergence behaviour of the locally re&ned grid together with
the smaller computational eIort needed per iteration (due to the smaller number of CVs)
resulted in a total computing time for the &rst level of a third of the time needed for the
conventional grid. The second grid level was computed more than &ve times faster by the
locally re&ned grid, not to mention the third grid, for which no relation could be determined.
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Figure 9. Comparison of the convergence history for the computation
of the turbulent �ow around a 2D car model.

The solution corresponding to the second grid level can be seen in Figure 10. At the top
of the &gure, a detail of the grid around the model is shown in the background of isolines of
the turbulent kinetic energy kT. The bottom part of Figure 10 shows streamlines and pressure
contours for the present test case. It is worth noting the smooth transition of all isolines and
streamlines from locally re&ned blocks around the model to coarser blocks in the outer �ow
region. Moreover, the form of the streamlines is very similar to the streamlines based on the
experimental data reported by Angelis [53].

The quality of the results can be veri&ed by a comparison with experimental values of the
velocity components. In Figure 11 experimental results are plotted together with the numer-
ical pro&les of the third grid level for the V -velocity. The &gure shows the good agreement
between experimental and numerical pro&les at the frontal part of the model. A small im-
provement in the solution compared with the original results was veri&ed mainly for the V
velocity component in the frontal region (data not shown).

The computation of this third test case demonstrated successfully the general applicability
of the developed local block re&nement scheme. The test case also revealed a very favourable
eIect of the locally re&ned grid on the convergence behaviour. This was a consequence of
a signi&cant improvement in grid quality, made possible by the �exibility introduced through
the local re&nement method in the grid generation process. Moreover, the improved grid
allowed the computation of an additional &ne grid level, which resulted in improvements
in the accuracy. This more complex test case shows that the pro&t of the developed local
block re&nement method can be twofold: a signi&cant gain in performance combined with a
simultaneous increase in accuracy, if the grid is carefully generated.
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Figure 10. Results for turbulent �ow around a 2D car model: contour lines of turbulent kinetic energy
with grid (left) and contour lines of pressure and streamlines (right).

The LBR method has also been successfully applied to practical computations, such as
the investigation of hot-wires in the vicinity of walls [54], where the local block re&nement
allowed for an unprecedented level of accuracy in the hot-wire simulations.

5. CONCLUSION

A new developed local grid re&nement procedure, called local block re&nement, was im-
plemented, validated and investigated by means of several test cases. The method proved
to preserve the order of accuracy of the underlying numerical scheme and showed excel-
lent compatibility with the multigrid solver, fully exploiting its advantages of convergence
acceleration and stability. Moreover, the local block re&nement was found to be robust and
provided substantial gains in performance and reduction of memory requirements to the em-
ployed numerical code. In the test cases considered, computing time gains up to 80 per cent
and reduction of memory requirements up to 50 per cent could be veri&ed.

Although the implementation and results presented correspond to the two-dimensional ver-
sion of the code, the extension of the procedure to three dimensions is, in principle, straight-
forward, but the special treatment of block corners will likely be very complex. However,
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Figure 11. Comparison of numerical (lines) and experimental (circles) pro&les of velocity component V .

it is expected that the local block re&nement procedure will provide even larger gains in
performance and memory requirements on three dimensions.
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